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The Law of Large Numbers
in Neural Modelling

STUART GEMAN!

Put loosely, the law of large numbers (LLN) says that the average of a large
number of independent, or nearly independent, random variables is usually
close to its mean. For some of the mathematics that typically arise in neural
modelling, this simple principle has a natural and rewarding application. In one
version of this application, equations for the development of long term memory
traces (usually modelled as changes in “synaptic efficacies™) are well approxi-
mated by more elementary equations, and from these the performance of the
model can be more easily anticipated. In a second version, a large system of
equations modelling the individual activities of interconnected homogeneous
populations of neurons is replaced by a small number of prototype equations
which accurately describe the macroscopic dynamics of the network. Models of
this latter type might be relevant, for example, to the generation of phrenic nerve
activity by the brainstem respiratory centers.

What I mean to present is more a point of view than a strict mathematical
technique. It is another, more simple, way of looking at models which may be
very complex, or even intractable, in their first formulation. For this purpose, 1
feei that a presentation completely by example will be most effective. A reader
interested in a more formal and rigorous development, and a more general
context, is referred to [9], [10], [12], and [14], and the references therein to other

authors.

Time averaging: the behavior of models for the development of long term
memory. In the three examples of this section, the LLN takes the form of a
stochastic “method of averaging” for differential equations, through which
method the behavior of a complex neural or cognitive model can often be
anticipated with surprising ease. The method applies to differential equations in
which the solution is slowly varying relative to the other time dependent terms
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of the equation. Equations modelling the development of a long term memory
are typically of this form: the dependent variable represents some component of
the long term trace, and it is slowly varying relative to the stimuli which effect
changes in that trace. It may be that a particular model has been formalized
using a system of integral or difference equations, but such models typically
have a natural reformalization using differential equations. And, conversely, a
method of averaging can be formulated for these other settings as well.

As both an introduction and a good demonstration of the method’s utility, I
will first apply it to a neural network memory model proposed by Uttley (in
[22]-[24]). (My discussion of averaging in Uttley’s model is, by and large, a
repeat of what was said in [8].) The model consists of a network of units called
“informons”. These are adaptive neuron-like elements which can learn to signal
whether or not a vector input belongs to a particular classification. The dy-
namics of the informon and the rule by which it self-organizes are defined by
the following equations

n
F(Y)= 3 F(X)v, + F(Z)y,, Ay, =-bF(X)F(Y) )
i=1
where
F(Y) is the output (firing rate) of the informon (neuron) labelled “Y™;
F(X), i=1,2,...,n, are outputs from other units in the network, and

comprise the input to the unit Y;
F(Z) is a binary classifying signal which indicates, during training, which

inputs (F(X,), . . . , F(X,)) belong to a particular category;
¥, i =1,..., n, are modifiable conductivities, which determine the extent to
which the signals F(X)),i = 1, . .., n, contribute to the output at Y;

v, is a fixed and negative conductivity transmitting the classifying signal to Y;

Ay, is the change in the conductance y; due to a simultaneous appearance of
an input F(X;) with an output F(Y);

b is a positive constant determining the rate at which this latter modification
proceeds.

The connection between this example and those which follow will be more
transparent if I use, as nearly as is possible, a unified notation. For this purpose,
let y(¢) be the output at time ¢ of the unit designated “Y” in the Uttley model
(replacing “F(Y)”). x,(¢), ..., x,() will replace F(X)),..., F(X,) as input
signals to Y, and y,(?), . . ., v,(¢) will, again, denote the corresponding conduc-
tivities. Since vy, is fixed and negative, it will be convenient to denote the net
classifying signal, y, F(Z), simply by —z(#). Finally, writing ¢ in place of b, a
continuous time formulation for (i) is

20 = S 3000 = 20,

30 = o090 = (O] 20 = 3 (050, (i)
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Uttley does not analyze this system directly, but instead replaces it by a new
system which is intended to be a more tractable approximation. The analysis of
this approximating system, together with simulation results, indicates that the
informon and networks of interconnected informons have properties suggestive
of classical and operant conditioning as well as a capability for pattern classifi-
cation. We will see that the method of averaging yields some additional insights,
and a more direct and precise analysis of the behavior of (ii).

This is a long term memory model, and Uttley assumes that y,(¢) reflects only
the long term behavior of x,(f) and y(7), not their most immediate fluctuations.
The translation, for (ii), is the assumption that e is small; changes in y,(¢) are
slow relative to those in x;(#) and y(¢). This assumption is an important one,
because it means that, essentially, dy(r)/dt “sees only the average” of the
right-hand side of the differential equation in (ii). To make this a little more
precise and to see why it should be true, consider the change in y,(7) over a
period of time At = §/¢, where § is small, but not nearly as small as €. In this
period of time, v;(¢#) will not appreciably change (its derivative being of order ¢),
but this is a considerable interval relative to the time course of x,(#) and of y(¢).
From (ii)

w(e+g) = w0 = e[ xop(s) as

i.e.

1+ 80 = 30 = 3 [V 26 = 3 05|

§ [e+ac - 8 i+
~ g f’ x,(5)z(s) ds —El 0k f‘ x,(s)x,(s) ds. (i)

The latter (very rough) approximation is because y;(s) is nearly constant over the
interval (¢, t + A¢].

Now, let us take the point of view (deferring discussion on this) that
(x(8), . .., x,(8), z(#)) is a random process, and that over large periods of time it
is essentially “independent of itself” (current observations of the process tell us
very little about its distant future). Then, (Af)™!f/*A x(s)z(s) ds and
(An)~1[1*4" x,(s)x;(s) ds are long run averages (since At = § /¢ is large) of nearly
independent random variables and should be well approximated by means (i.e.
expected values)

+
Ait f A (5)2(s) ds ~ Ait J B ) 2(s)] o,

& [ ) do o [ B (6)5(5)] .

Finally, put this back in (iii) and take derivatives

0= eE[5(0:0] = ¢ 3 yOE[x(Dx(0)], (i)
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and this is what I meant when I said that dy,(t)/dt sees only the average of the
right-hand side in (ii). The point is this: (iv) relates the “memory trace”, v,(f), to
the statistical structure of the environment (as revealed by the operator, E).
When the solution to (iv) (with ~ replaced by =) is close to that in (ii), we will
be able to infer from (iv) the most important features of the model’s behavior.

In fact, under very general conditions the solution to (i) is well approximated
by the solution to (iv). The smaller ¢, the better the approximation, and, in
particular, the error goes to zero with e. Details about the conditions, as well as a
precise statement of the sense in which the approximation holds, can be found in
[9] or [10].

The next step, then, is to develop the consequences of (iv). But before this, we
should briefly examine in a nontechnical manner the two most important
assumptions implicit in this approximation procedure. Above all, the reader may
question the use of a random process model for x,(¢), i = 1, 2, ..., n, and z(¢),
the “environment” of the conductivity, ,(¢). In fact, we did not have to take this
approach at all, since the “method of averaging” is, originally, a technique for
approximating deterministic equations (see, for example, Mitropolsky [21]). Thus,
a deterministic model would lead us to a version of (iv) in which a certain time
average plays the role of expectation, E, and we could then proceed to analyze
instead this analogue to (iv). But I believe that the probabilistic point of view
has something special to offer, and the further discussion of this example
together with the examples below should convincingly support this position.
Whether the environment is in some sense truly random is of no importance; the
probability model offers a convenient framework in which to describe character-
istics of that environment. It does not in any sense suggest that the environment
is unstructured. Indeed, a determinstic model is merely a special case.

There has also been made a “mixing” assumption: that the past and future
are, asymptotically, independent. Mixing is an ergodic-like property that, practi-
cally speaking, puts very little constraint on potential models of the environ-
ment. (Any deterministic model, for example, is mixing. But then (iv) is (ii), and
the method offers no simplification.) For example, a wide variety of Markov
processes, and in particular those which would be most appropriate in repre-
senting a model’s environment (i.e. bounded and obeying some mild regularity
conditions), are mixing in a way suitable for application of the method of
averaging. In the pattern recognition literature, a much stronger assumption is
typical: successive scenes or patterns are statistically independent.

In short, (iv) will approximate (ii) under assumptions which are natural for the
system being modelled. What, then, can (iv) tell us about the behavior of
Uttley’s model? A good place to start is with the asymptotic behavior: How does
the model perform after a theoretically infinite period of time? If there is to be
an “asymptotic behavior”, then we must first assume that something like an
equilibrium for vy,(¢) exists, and this amounts to making an assumption of
stationarity. Or, at the least, an assumption that the expectations appearing in
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(iv) do not depend on time (but averaging is appropriate whether or not this is
the case). Really, this is not much of an additional assumption, since there
would be no point in a long term memory if the environment did not possess
some degree or stationarity. Let us assume, then, that E[x,(#)z(¢)] = E[x;z] and
E[x,(9)x(H)] = E[x;x;] do not depend on ¢ (certainly not, however, that x,(¢) or
z(?) are constant). Then, the equilibrium for (iv), and therefore the approximate
equilibrium for (ii), is immediately available. Simply set the derivative in (iv)
equal to 0 and solve for v,

2 E[xx]v; = E[xz], i=12...,n v)
j=1

Define n X 1 column vectors X(¢) and I'(¢¥) by X(¢) = (x,(¥), .. ., x,(£)T and
T = (vi(9), ..., 1,()T (using T to denote transpose). In vector-matrix nota-
tion, (v) is E[XX 7]l = E[Xz]. And therefore, assuming that E[XX 7] is nonsin-
gular,?

I' = E[XX7]"'E[ Xz]. (vi)
Since (ii) behaves.like (iv), the conclusion is that I'(¢) will approach and remain
close to E[XX 7|7 'E[Xz].

The reader familiar with multivariate analysis will recognize (vi) as the
solution to the linear regression problem: Choose v,, . .., ¥, SO as to minimize
the mean square error in approximating z(¢) by the linear combination
27-1 v%(0), i.e. minimize

J
2

E (vii)

n
z— Y%
j=1

over all possible values of T = (y,, . . ., ¥,)7. In words, the conductivities of the
informon modify in such a way that the output of Y in absence of the classifying
signal (i.e. =7, v,()x(#)) approaches the best linear predictor of z(7) (the
classification) given x,(?), . . . , x,(f). Actually, we know much more. (iv) is an
autonomous system of linear differential equations, and its exact solution is well
known. Then, since (ii) stays close to (iv), we have available essentially the entire
time course of I'(#). Roughly, I'(¢¥) approaches E[XX T17E[Xz] exponentially
with rate determined by the eigenvalues of the positive definite matrix E[XX .
The method of averaging, really an application of the LLN, gives us a
virtually complete description of the dynamics of the informon. It reveals details
about the unit’s behavior not obviously apparent in (i) and not found in the
system which Uttley offers as a more tractable alternative. Thus we know that
the informon is asymptotically a nearly optimal classifier—at least among linear
machines. In fact, 37_, v;x,(#) will predict z(?), in an approximately minimum

2Equivalent is the assumption that no component of X(f), say x,(f), is a deterministic linear
combination of the remaining components {x;(1)}, j # i. Any such deterministic relation would be
undone by “noise” in a real system.
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mean square error sense, whether or not z(¢) is the binary signal assumed in the
model. ‘That is, asymptotically, the solution to (iv) minimizes (vii) whatever the
nature (discrete or continuous) of the “classifying signal”, z(¢). And, if
x(8), . .., x,(0), z(¢) jointly form a Gaussian process, then the best linear
predictor of z(f) is also the best unconstrained predictor.

The analysis, then, supports (ii) as an appropriate system for learning to
predict a “classification”, z(¢), from the information contained in the channels
xy(2), ..., x%,(8). But, by making the connection to some well-studed areas of
statistics and pattern recognition, the analysis also suggests some possibly
unattractive features of the model. For example, unless (x,(?), . . ., X, (), z(2)) is
a Gaussian process, the best linear predictor of z(#) may be quite inferior to the
overall best predictor. Although the inevitable noise present in neural activity is
probably well approximated by a Gaussian model, I would doubt that the
signals themselves are anything like a Gaussian process. If these signals are not
Gaussian, would the nevous system employ a suboptimal solution? Also, there is
reason to question the efficiency of the modification procedure defined in (ii). It
is, essentially, a stochastic approximation procedure for finding the least mean
square error linear predictor of z(f) given x,(¥), ..., x,(¢) (see, for example,
Duda and Hart [6], or Wasan [25]). We must, then, ask why the nervous system
would utilize this particular version of stochastic approximation when there are
other versions known to perform more efficiently. Again, there is raised a
question of optimality. There may, of course, be good answers for these
questions, and it may be that the model is entirely appropriate. But, at the least,
we have established a framework in which the model can be meaningfully
compared to already existing theory.

Uttley points out that since y,(f) may be positive or negative, its neural
realization would require both excitatory and inhibitory synapses. Amari (in [2])
has proposed a model quite similar in spirit to Uttley’s, but one which more
explicitly addresses the problem of achieving a net conductivity which may be
positive or negative, out of couplings which are individually constrained to be
excitatory or inhibitory. In [2], Amari is already aware of the method of
averaging and applies it, much as we did above, to determine the equilibrium
behavior of his model. I will retrace some of Amari’s analysis, and interpret the
conclusions with special attention to the close relationship between the Uttley
and the Amari theories.

The fundamental unit in Amari’s model is a neuron-like device, which I will
again call “Y”, receiving inputs x,(¢), . . ., x,(¢), possibly from other units or
possibly from an external source. Each of these inputs x,(#) influences ¥ through
both an excitatory and an inhibitory coupling; let us denote the strengths of
these couplings by v, (¢) and v, (¢) respectively. The unit learns in the sense that
these coupling strengths are modified by its experience. The net input to Y
through this variable pathway is Py 'yj+(t)xj(t) — 2ja1 % (D%(0). Or, in terms
of the corresponding vector quantities (for notation, refer back to the discussion
of Uttley’s model): I'*(£)7X(¢#) — T~ (¢)"X(¢). There is also at ¥ an unmodifiable
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channel which receives a “teacher” input, z(f). Learning is by modification of
the y connectivities, as is described (in its continuous time formulation) by the
following equations:

%Yi+(t) = e(a,z(0)x (1) — a,v* (1)

%7.-‘(1) = E{aaxi(t)( él v (D)%) — _é Y,"(t)x,-(t)) - a.«.v,-‘(t)}-

Here again e is a small positive constant. a,, a,, a; and a, are for the time being
arbitrary positive constants. Writing T'(¢) for T*(¢) — I (2), the system is
rewritten in more convenient vector-matrix notation as

L) = ez (DX() — T (),

%I“(t) = e(a,X(DX()TT(2) — a, T~ (1)). i)

Now let us apply the LLN. When ¢ is small, a good approximation to (viii)
(making all the necessary assumptions, as discussed in the previous example) is:

%I‘*(r) = (e, E[2X] — a,T*(1),

d

at
This is an autonomous linear system, and we could if we wished analyze it in
complete detail. But the asymptotics (equilibrium) are the most revealing:

T*(t) - (a)/ay) E[ 2X ], T (- (a3/a4)E[XXT]T(t).

Therefore, at equilibrium,

T(f) = e(a,E[ XXT]T(1) — a,T~(1)). (ix)

I =T*-T~ = 2 g[2x] - 2 E[XXT]T

a, a,
_aa,fa, )"
=>F——a2a3(a31+ E[ XX ]) E[zX] x)

where I is the n X n identity matrix.
Let us examine the information that Y receives after learning (i.e. with I" given
by (x)) and in the absence of the teacher signal, z(¢). Then,

T*+TX(r) — T-7Xx(1) = X(1)'T

. z;—Z:XT(t)(%:I + E[XXT])_lE[zX]. (xi)

The constant, a;a,/ a,a;, is obviously unimportant; the interpretation of (xi) will
be clearest if we choose o,/ a; = a,/a; = § so that

X(OTT = X(1)"(81 + E[XXT])”'E[ zX]. (xid)
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Notice: If § were 0 (it cannot be) this would be exactly the asymptotic output
of Uttley’s informon in the absence of the “classifying signal”, z(#). Thus (xii)
approximates the minimum mean square error linear predictor of the classifying
signal (here called the teacher signal), z(¢). The term 8/, which may at first
appear to be a nuisance, actually represents a potentially important improve-
ment over the unmodified “optimal” solution. In fact, (xii) is a “ridge estimator”
for z(¢), introduced by Hoerl and Kennard [19], and since then analyzed in some
detail (see for example [20]). When E[XX T] is “nearly singular” (more precisely,
“ill-conditioned”), the addition of 8/ stabilizes the inverse in (xii), making it
more accurately computable in a real system.

To appreciate the relevance of this in the present context, consider again the
Uttley system (ii), but when E[XX T] is nearly singular (as would be the case, for
example, if two of the channels x,(¢) and x,(¢) were essentially redundant). For
fixed e, the approximation of (ii) by (iv) (i.e. the method of averaging) is made
less accurate as (iv) is brought closer to instability—which is just what happens
when E[XXT] is brought closer to singularity. Although the solution to @iv) will
still asymptotically approach the desired (optimal) equilibrium, the solution to
(ii) the real system will behave erratically, wandering far from the course
predicted for it by (iv). Hence the system is, under these circumstances, unrelia-
ble. In contrast, the relative stability of (ix) (the “averaged system” for the
Amari theory) is essentially unaffected by an ill-conditioned matrix E[XX 7). As
a consequence, the method of averaging remains in force and the desired
solution, (xii), is still realized to within a good approximation.

Amari and Uttley, in the papers reviewed here, have each proposed neural-
like mechanisms capable of learning pattern classifications. Thus modelled
neurons in these theories learn to predict a one dimensional “classifying signal”
based on the evidence available in an n dimensional pattern. There is also the
problem of postulating mechanisms by which the nervous system can commit to
memory patterns themselves, both motor and sensory, as it is evidently capable
of this task as well. Grossberg has proposed a theory for pattern learning in
which individual neuron-like units learn to reproduce an entire pattern of
activity (see, for example, [17] and [18]). Excitation of one of these units elicits
an activity pattern in the “postsynaptic” units, and this pattern is identical (in
the sense of relative, “figure to ground™ activities) to a practice pattern arriving
at these postsynasptic units during learning. Grossberg’s analysis is deterministic
and rather sophisticated. Although I will not add to the conclusions reached by
that analysis, I will show how the essential properties of the learned behavior of
the system can be anticipated by an application of the method of averaging.

All units (modelled neurons) of the network belong to one or both of two
subpopulations: “I” represents the collection of subscripts belonging to those
units in one of these subpopulations, and “J” represents the collection of
subscripis associated with the other subpopulation. The units in the subpopu-
lation “J” receive a pattern of input from outside the immediate network. Each
unit in “I” contacts all units in “J”, and, under appropriate conditions, will
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learn to reproduce the pattern seen at “J”. What makes this model particularly
complex is that I and J are not assumed to be disjoint; the intersection, I N J, is
arbitrary. In other words, the “receptor cells” in “J” may themselves be
“sampling cells” in “I”, realizing a feedback, rather than feedforward, system.

Let us represent by b(#), i € I, the output of the i element of the “I”
subpopulation at time ¢. The activity of the j element of the “J” subpopulation,
call it x(#), is determined by the outputs of the units in “I”, and an exogenous
input, ¢,(¢). Formally,

2500 = =50 + S B0 + o) (xii)
for each j € J, where 1/a(?) is an “instantaneous decay time” (a(#) > 0 for all
1), and v,(¢?) is the synaptic or coupling strength for the i € I to j € J contact.
The exogenous input to “J” is a pattern in the sense that it takes the form

c(¥) = Y(1)6;, where 2 6=1 (xiv)
JEJ
and 6, > 0 for all j € J. y(?) is the input intensity at time ¢, and may vary
arbitrarily during the learning period.
As in the previous examples, learning is by modification of the “synaptic
weights”, v, (), i € 1,j € J,

dv(1)/dt = -d(1)vy(2) + €(1)x,(2). (xv)

e,(¢) plays a role analogous to b,(f), representing the signal from i € I available
to effect change in v,(f). In the absence of a correlated i € 1 and j € J activity,
i.e. when e(£)x;(¢) = 0, y,(¢) decays towards 0 (d,(¢) > 0 for all ). Observe that
(xv) is physically “realizable”, in the sense that modification of y,(¢) depends
only on signals locally available, i.e. it depends only on pre- and postsynaptic
activities. (Actually, the theory in [17] is developed for a system somewhat more
general than (xiii) and (xv). The slightly specialized version here will serve for
better illustration. The general system can be discussed in much the same way.)

What sort of results should we be looking for? Grossberg gives conditions
under which the system demonstrates, asymptotically, the following learned
behavior: With or without the exogenous pattern of input (xiv), activity in the
“I” subpopulation leads to a reproduction of the learned pattern at J. In
particular, after learning, “I” activity will produce a relative activity at x; equal
to 4;

x(4)

Zres (1) ~

the relative strength of the exogenous signal at j. (See [17] for a precise
formulation of results.) Let us see how we might anticipate this behavior by
taking a probabilistic point of view and applying an LLN.

x;(¢) models the activity of the j € J neuron, and should be “fast” relative to
the other time dependent terms appearing in the right-hand side of (xiii). As a

9 (v
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first approximation then, it is not unreasonable to replace x,(f) by its “instanta-
neous equilibrium value”, determined by setting dx;(f)/dt = 0 in (xiii),
bi(1) c(?) s
1) = —v; () + )
50 = 2 250 + 2o (xvid)

ier

With this substitution, plus the one in (xiv), (xv) becomes

d e(0) b (1) e()Y(?)

—v.:(8) = -d.(t)y, (1) + —— . () + ———=4..

dt Yy( ) :( )Yy( ) k%[ a(t) Yk/( ) a(t) J (XVIII)
Now let us again make the assumption that y;(¢) is slowly varying, representing
a long term memory trace. If, in equation (xv), we write ed() for d,(7) and eé(¢)
for ¢(#), then with this assumption, we may take & to be small while d(f) and
é,(r) are still of order 1. (xviii) then becomes

AQLAY) &(¥(2)
Lo W+ 250e)

%Y,.j(t) e E(—J,'(t)‘)/!'j(t) + 2

kel

which should be well approximated by the “averaged equation”
d -
E 'Y.j(t) =¢& —E[ d,(t) ] 'Y.'j(t)

.S E[ AOLA0 }ij(,) N E{ AO0 } 0) o

Ker a(?) a(?)

Although (xix) is deterministic, it is not at all simple. In Grossberg’s theory,
a(t), bi(?), d(¥), e(t), and Y(¢) may themselves depend on {x,(9)},i € I U J, and
{vs(0}, i €1, j €J, as long as the subscript conditions (e.g. a(?) does not
depend on j) are not violated. The possible dependence on the v (f)’s in
particular prevents us from assuming that the expectations in (xix) are constant
or that (xix) is linear. However, at any equilibrium point for (xix) the y,(f)’s
entering into these expectations are constant (although unknown), and in this
case these expectations themselves may be assumed constant (just as in the
previous two examples). At equilibrium, then, we may write

B E[é&b,/a] E[éy/a]
wT T Ea T

b, (xx)

where the expectations, which may depend on {v;},i € I,j € J, do not depend
on time.

Fix j. Then (xx) is a linear system of equations for Yi> k € I, in which the
only dependence on j appears in the inhomogeneous terms (due to 6). Hence, its
solution (which I will assume exists) has the form

E [ évy/ a]

L PR
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where M = {my)}, i, k € I, is a squéke matrix determined by the coefficients of
Y4 in (xx) and does not depend on j. The point is that, at an equilibrium, y;; (of
the averaged equation) must have the form y; = a;6;, in which case (from (xvii))
(s 20, ¥
50 =(Z w5+ 55 )

and this obviously implies that (xvi) holds. In other words, activity in “I”
reproduces the practiced pattern at “J”, even when that pattern is no longer
present as an exogenous input (i.e. even when y(¢) = 0). In fact, a direct (but
much more involved) analysis of the unapproximated system, (xiii) and (xv),
shows that under suitable conditions (xvi) holds there as well, and without a
slowly varying assumption for y,(?) (see [17]).

Certain generalizations are immediately available, “free of charge”. Since (xv)
is well approximated by the averaged equation (xix), any substitution for the
system (xiii) and (xv) that leaves (xix) unmodified will demonstrate essentially
the same learned behavior. This includes, for example, allowing a(#), b(?), di(¢),
and ¢(?) to depend on j, provided that E[d;], E[e;by; /&), and E[e;y /a] are still
independent of j. Of course, this is as true in the previous two examples: the
average equation represents a class of systems that must all exhibit approxi-
mately the same asymptotic behavior.

There are in the literature many other examples which can be, or already have
been, treated in very much the same way. Although the three which I have
discussed above should serve as a good introduction to this application of the
method of averaging, I would also recommend (3), (4), (5), and (11), each of
which contains an example of the explicit use of this technique in problems of
neural or cognitive modelling.

Population averaging: stable oscillations in a large system of modelled neurons.
In mathematical models of neural network activity, considerable use has been
made of equations for the average activity of homogeneous collections of
modelled neurons (some examples are in [7], [13], [15], [16], and [26]). The
implicit assumption is that “macroscopic” (average) activity has a description
which does not involve “microscopic” (individual neuronal) activities, in close
analogy to the situation in statistical mechanics. Simulation experiments (see
especially [1]) indicate that such a description is in fact broadly available, but
there have been very few rigorous analytic results. This “population averaging”
can again be viewed as an application of the LLN; here I will quote some
analytic results (from [12]) which, in some instances, rigorously justify this
application.

The discussion will be through a specific example. For this purpose, I will use
essentially the model proposed by Miller and me (in [13]) for the generation of
periodic phrenic nerve activity by the brainstem respiratory centers. Our analysis
was based on the hypothesis that the LLN was operating in the proposed
system. As I will indicate, for the equations discussed here the hypothesis is
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indeed correct, meaning that the behavior of the entire (very large) system can
be accurately described by a small number of prototype (averaged) equations.

In [13], Miller and I argue for a respiratory model based on reciprocating
activities of negatively coupled inspiratory and expiratory populations of neu-
rons, each of which is capable of independent stable oscillation if (theoretically)
isolated from the other. The model postulates that these populations are further
divided into excitatory and inhibitory subpopulations, and that the interaction
between these subpopulations is responsible for the inspiratory and expiratory
oscillations. For the discussion here, it will be enough to examine just one
population, let us say the inspiratory population of neurons. Suppose that there
are n excitatory inspiratory neurons and m inhibitory inspiratory neurons. x,(?)
will denote the cell body membrane potential of the ith excitatory neuron at
time ¢, and y,(¢) will denote this potential for the ith inhibitory neuron. The
dynamics of the modelled inspiratory population are described by the following
systems of equations

770 = 50+ 3 55 (0)

1 & .
— 2wy, 1<i<n

0 =0+ 5 247 H5(0)

m
S, t<i<m @
Here,

a (B) is the inverse of the membrane decay time of excitatory (inhibitory)
neurons;

J(x() (g(y(1)) is the [requency of action potentials generated in the axon of
the ith excitatory (inhibitory) neuron by a cell body membrane potential of x,(f)
(:i(9). f(x) and g(x) are assumed to be bounded and increasing functions.

All y;’s are nonnegative. n~'y;” * is the coupling strength (“synaptic weight”)
from the jth excitatory to the ith excitatory neuron, m"yj,T*' is the coupling
strength from the jth inhibitory to the ith excitatory neuron, etc. When there is
no synaptic connection between two neurons, the corresponding Y;i 18 zero.
“1/n” and “1/m” embody the assumption that the total synaptic contribution
to a neuron’s input is “order 17, regardless of the number of these synapses.

Let us suppose that the system (xxi) represents a reasonable first approxima-
tion of the dynamics of the inspiratory population of brainstem neurons. With n
and m of order 10° (conservatively), there is the ontological problem of choosing
10" or more parameters in (xxi) so as to achieve a stable oscillation with a
specified period and wave form. If it were possible to specify that all synaptic
weights of a given type of synapse (such as excitatory to excitatory) were
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identical, then (xxi) would be perfectly described by just two prototype equa-
tions, one for the excitatory and one for the inhibitory subpopulations. Then, the
biological problem would be entirely manageable, requiring the appropriate
specification of only a very small number of parameters. But it is not a tenable
proposition that this level of precision is achieved in a developing nervous
system.

Miller and I (in [13]) have argued that the ontological problem is limited to
the specification of target values for each of the four types of connections in
(xx1), and that random fluctuations about these target values (means) will not
influence the dynamics of the network as a whole. We reasoned heuristically, as
follows: For each type of connection, take the case of excitatory to excitatory,
let us model the synaptic weights, yjf *, 1< j,i <n, as independent and
identically distributed random variables, chosen from a distribution in which the
mean only is genetically specified. Let y** be the mean strength of an
excitatory to excitatory synapse. When n is very large, the dependence between
any two excitatory neurons, or between any excitatory neuron and any synaptic
weight, should be very small. Then, the excitatory input to the ith excitatory cell,

% é} v f(x(0), (xxii)

should “look like” an average of independent random variables. The LLN
would replace (xxii) by its mean

n

7 Sy )~y S Bl (0)]

= Jj=

~

S |-

n
2 B[y ]E[fx(1)]
=
(because y;” * and x;(¥) are “nearly independent”)
= E[v;/ " ]E[f(x(1)]
(because all of the yj,.+ *’s and all of the x,(£)’s are identically distributed)
=y* +E[f(xi(t))]'

If this makes sense, then it applies as well to the other three input terms in (xxi).
For each i, then, we expect that

%xi(t) ~ —ax(t) + 'Y++E[f(xi(t))] - Y_+E[ g(}’i(t))]’

%yi(t) ~ -By(t) + Y E[ f(x())] — v~ "E[ g(x(9)]- (xxiii)

Since the right-hand side of (xxiii) is deterministic, x;(#) and y,(f) are nearly
deterministic. In this case, E[ f(x,(¢))] = f(x(1)) and E[g(y(1))] =~ g(y,(¢)). Put
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this back in (xxiii) and conclude that the behavior of the entire system (xxi)
should be well described by the two dimensional prototype system

2 x() = —ax(t) + ¥* Hx() — 8 ())

2 y(1) = -B(0) + v F0) — 78O0, (oxiv)

Miller and I assumed that (xxiv) provided an adequate description for (xxi),
and analyzed the dynamics of (xxiv) as a possible model for the generation of
inspiratory neuronal activity. In [12] it has been shown that (xxiv) does in fact
provide an arbitrarily good approximation for (xxi) as n and m go to c0. More
specifically, as n - o0 and m — oo all excitatory activities x,(¢), 1 < i < n, and
all inhibitory activities y,(f), 1 < i < m, will remain, respectively, arbitrarily
close to the trajectories of x(¢) and y(¢), as defined by the prototype equations in
(xxiv) (see [12] for details). In other words, the LLN is in force in (xxi), and the
consequence is that the behavior of the entire system is determined by the
parameters in the two dimensional system, (xxiv).

Simulations of this averaging effect can be quite striking. For example, we
may choose the functions f and g and the six parameters in (xxiv) so that
(x(¥), y(#)) has a globally stable limit cycle. Then, in a typical experiment, with
the standard deviation of each y larger than 50% of its mean, (xxi) already
oscillates when n = m = 7. (For smaller » and m, all activities approach an
equilibrium.) But, for this still small system, the oscillation is quite different
from the limit cycle trajectory predicted by (xxiv). When n and m are 80,
however, the x,(f) and y,(f), 1 <i < 80, trajectories are virtually indistinguish-
able from the prototype x(f) and y(¢) trajectories. See [12] for phase portraits
from one such experiment.

If the output of the respiratory centers can be simulated by a four dimensional
system (two subpopulations of inspiratory and two subpopulations of expiratory
neurons), why commit large numbers of neurons to the generation of this
activity? One obvious reason is reliability. It is widely appreciated that there is
advantage to redundancy in the nervous system, especially when promoting vital
functions such as breathing. There may also be a second purpose, as is suggested
by the averaging effect discussed here. The dynamics of a low dimensional
system will be more critically dependent on individual parameters. The rele-
vance of this is that each component of a small system generating respiratory
activity would need to be specified with extreme accuracy, if the system is
precisely to achieve a desired output. The alternative is to reach this precision by
averaging: when in force, the LLN guarantees arbitrary precision in arbitrarily
large systems. Of course, nothing said here needs to be limited to models for the
control of breathing. Averaging is an available mechanism for the reliable and
precise generation of activity by a homogeneous collection of neurons, whatever
the physiological application.
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